The coupling of localized surface plasmon resonance-based photoelectrochemistry and nanoparticle size effect: towards novel plasmonic photoelectrochemical biosensing.
نویسندگان
چکیده
Visible light-activated localized surface plasmon resonance-based photoelectrochemical detection is reported for the first time.
منابع مشابه
Tunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملExploring the Unique Characteristics of LSPR Biosensing
Plasmonic biosensors based on the localized surface plasmon resonance (LSPR) of metal nanoparticles have been developed using both nanoparticle arrays and single nanoparticles. We introduce LSPR biosensing by describing the initial experiments performed using both model systems and disease biomarkers. LSPR shift-enhancement methods, exploitation of the short electromagnetic field decay length, ...
متن کاملLocalized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches
Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure ...
متن کاملA localized surface plasmon resonance-enhanced photoelectrochemical biosensing strategy for highly sensitive and scatheless cell assay under red light excitation.
In this work, a novel photoelectrochemical biosensing strategy was designed for cell assay under 630 nm (red light) excitation. WS2/Au NP nanocomposites were prepared as a photoelectrochemical biosensing substrate. The localized surface plasmon resonance effect of Au NPs tremendously improved the photoelectric conversion efficiency and enhanced the detection sensitivity.
متن کاملDevelopment of Nanostructured Plasmonic Substrates for Enhanced Optical Biosensing
Plasmonic-based biosensing technologies have been successfully commercialized and applied for monitoring various biomolecular interactions occurring at a sensor surface. In particular, the recent advances in nanofabrication methods and nanoparticle syntheses provide a new route to overcome the limitations of a conventional surface plasmon resonance biosensor, such as detection limit, sensitivit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 48 6 شماره
صفحات -
تاریخ انتشار 2012